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e Write your full name and student number
e Write your answers in the designated area; if you use extra sheets, indicate this

clearly!

e Reversed sides of each page are left blank intentionally and could be used for draft

answers

e Read the questions carefully
e Please, do not use a pencil

¢ Books, notes, phones, smartphones and tablets are not allowed. Calculators and

dictionaries are allowed.

The weighting of the questions and the grading scheme (total number of points, and mention
the number of points at each (sub)question).

Grade = 1 + 9 x (score/max score).

For administrative purposes; do NOT fill the table

Maximum points

Points scored

Question 1 15
Question 2 20
Question 3 10
Question 4 10
Question 5 15

Total 70

Final mark:




Question 1. (15 points)

A. Find the capacitance per unit length of two coaxial metal cylindrical tubes, of radii a
and b. (5 points)

B. A long straight wire, carrying a uniform line charge A, is surrounded by rubber
insulation out to a radius a. Find the electric displacement (it’s a vector!). (5 points)

C. Find the total force (including direction) per unit length between two long parallel
wires (a distance d apart) with the current flowing in opposite directions. (5 points)

Answers:



Model answers Question 1: (15 points)

A. Problem 2.43 (p107) (5 points)
Problem 2.43
Say the charge on the inner cylinder is @, for a length L. The field is given by Gauss’s law:
fE-da =F -2xs-L = %Qenc = %Q = E = -2 13 Potential difference between the cylinders is

2mweo L s

b Q bl Q b
V(b)—V(a):—/ Edl=— % —ds:—mln<—>.

a 2meoL J, s a

As set up here, a is at the higher potential, so V.=V (a) — V(b) = 2W?DL In (2).

C= % = ﬁg—g, so capacitance per unit length is

B. Example 4.4 (p182) (5 points)

Solution
Drawing a cylindrical Gaussian surface, of radius s and length L, and applying
Eq. 4.23, we find

DQ2nrsL) = AL.

Gaussian surface

Therefore,

A
—S8. 4.24
2s ( )
Notice that this formula holds both within the insulation and outside it. In the
latter region, P = 0, so

S, fors > a.

Inside the rubber, the electric field cannot be determined, since we do not know P.
C. Chapter 5, (p226) (5 points)

As an application, let’s find the force of attraction between two long, parallel
wires a distance d apart, carrying currents I; and I (Fig. 5.20). The field at (2)
dueto(1)is

toly
B=—,
2nd

and it points into the page. The Lorentz force law (in the form appropriate to line
currents, Eq. 5.17) predicts a force directed towards (1), of magnitude

_ ol
F=1 (_Z:rrd)f dl.

The total force, not surprisingly, is infinite, but the force per unit length is

_ b hh

f= o d (5.40)

If the currents are antiparallel (one up, one down), the force is repulsive—
consistent again with the qualitative observations in Sect. 5.1.1.



Question 2. (20 points)

A. How much work does it take to assemble four negative charges on the corners of a
square (side a)? (5 points)

B. An infinite solenoid (n turns per unit length, current I) is filled with linear
diamagnetic material of susceptibility x,,. Find the magnetic field inside the solenoid.
Is the field enhanced or reduced by the diamagnetic material? (5 points)

C. Find the exact magnetic field a distance z

> N

above the center of a square loop of side w,
carrying a current /. Verify that it reduces to
the field of a dipole, with the appropriate dipole
moment, when z »> w. Use the coordinates as =
depicted on the right in Figure 1. (10 points) )
z
/ ‘w/2 \/
| S ——
'LU/2
Figure 1.

Answers:



Model answers Question 2: (20 points)

A. Modified Problem 2.31 (p92-p93) (5 points)
If the reference is set at infinity, W = QV(r). To place the first charge doesn’t cost

any energy, but the second charge costs W, = i q Z, the third charge adds W5 =
0
! q (g + L) and the last charge adds W, = 4; q (Zq +-2 )

amey ' \a  V2a e a ' Vza
B. Example 6.3 (p286) (5 points)
2

Since B is due in part to bound currents (which we don’t yet know), we cannot
compute it directly. However, this is one of those symmetrical cases in which we
can get H from the free current alone, using Ampere’s law in the form of Eq. 6.20:

H=nlz
(Fig. 6.22). According to Eq. 6.31, then,
B = po(1 + xm)nl z.

If the medium is paramagnetic, the field is slightly enhanced; if it’s diamagnetic,
the field is somewhat reduced. This reflects the fact that the bound surface current

Ky =M x fi= yn(Hxf) = xunl ¢
NS~—

¢ is in the same direction as I, in the former case (x,, > 0), and opposite in the
latter (xm < 0).

C. Problem 5.36 (p255) (10 points)
Problem 5.36

The field of one side is given by Eq. 5.37, with s —

: . (w/2)
22 4+ (w/2)? and sinfy = —sinh) = ————;
w2 : = E e
/J,()I w . .
= — . To pick off the vertical
AT (/22 + (w2 /4)y/22 + (w?)2)
/2
component, multiply by sin¢ = L for all four
22+ (w/2)?
2
sides, multiply by 4: |B = M v Z

z
2T (22 + w2/4)\/2% + w?/2

2
For 2> w, B ~ “207{:; 3. The field of a dipole
Hom

for points on the z axis (Eq. 5.88, with r — 2, # — 2,0 =0) is B = or 53 &
Tz




Question 3. (10 points)
Suppose V = 0 and A = Aysin(kx — wt) §, where A,, w, and k are constants.

A. Find electric E and magnetic B fields. (3 points)
B. Check that E and B satisfy Maxwell's equations in vacuum. (6 points)
C. What condition must you impose on w and k? (1 point)

Answers:



Model answers Question 3 (Problem 10.4): (10 points)

A. 142 points; 3 points

E=-VV - —=—-Agcos(kr —wt)y(—w) = | Agwcos(kr — wt) ¥,

)
B=VxA=12 % [Ag sin(kz — wt)] = | Aok cos(kz — wt) Z.

B. 6 points
V.E=0v, V-B=0 [Ipointeach
%) 7B
VXE =12 (— [Aow cos(kr — wt)| = —Aowk sin(kx — wt) 2z, —r_— = —Apwk sin(kr — wt) z,
dx ot
%
sonE:f(,_—B V. 2 points
ot
% IE
VxB=-y ;—r [Aok cos(kx — wt)] = Aok? sin(kz — wt) ¥, rTfr = Agw? sin(kz — wt)y.
o ot
2 noints
C. 1 point
JE ‘ .
So VxB = ,t.f.oc—Tth provided 2 = ,u.;]EQw‘Q. or, since 2 =1 /1o€o. |w = ck.
T




Question 4 (10 points)

A square loop of wire, of side a, lies midway between two long wires, 3a apart, and in the
same plane. (Actually, the long wires are sides of a large rectangular loop, but the short ends
are so far away that they can be neglected.) A clockwise current / in the small square loop is
gradually increasing: dI/dt=k (a constant).

[}

1=
‘\/'I a

[}

A. Find the mutual inductance of the loops. Tip: you might find useful to exploit the equality
of the mutual inductances. (5 points)

B. Find the emf induced in the big loop. (3 points)

C. Which way will the induced current flow? (2 points)

Answers:



Model answers Question 4 (Problem 7.23): (10 points)

A. (5 points)

It’s hard to calculate M using a current in the little loop, so, exploiting the equality of the mutual inductances,
I'll find the flux through the little loop when a current I flows in the big loop: & = M. The field of one long

e e B kol _ pol p2a 1 . _ pola . o
wire is B = 5= = &, = 5= [ Jads = 5—=1n2, so the total flux is

{I) = 211]1 f— M = ﬁff — M
T
B. (3 points)
dd dl
g = bokaln2
s

C. (2 points)

Direction: The net flux (through the big loop), due to I in the little loop, is into the page. (Why? Field
lines point in, for the inside of the little loop, and out everywhere outside the little loop. The big loop encloses
all of the former, and only part of the latter, so net flux is inward.) This flux is increasing, so the induced
current in the big loop is such that its field points out of the page: it flows | counterclockwise. |




Question 5 (15 points)

A plane electromagnetic wave Eycos(kz — wt) travelling through vacuum in the positive z
direction and polarized into the x direction, encounters a perfect conductor, occupying the
region z > 0, and reflects back. The electric field inside a perfect conductor is zero.

A. Find the complete electric field of the plane electromagnetic wave in the z < 0 region, by
invoking the proper boundary condition (see the formula sheet). (5 points)

B. Find the accompanying magnetic field in the z < 0 region. (5 points)

C. Assuming B=0 inside the conductor, find the current K on the surface z=0 by invoking the
appropriate boundary condition (2 points)

D. Find the magnetic force f (averaged per time) per unit area at the surface (Tip: f = KXB)
(2 points)

E. Does you answer make any sense? (1 point)

Answers

10



Model Answers Question 5 (Griffiths, Problem 9.34 modified) (15 points)

A. Because the EM wave orthogonal to the interface, the boundary condition

E| -E}=0
Eg = (0 because the conductor is perfect (1 point)
E; +Er =0;Eg = —E; - thereflected wave has a m phase shift (1 point)
E = Ey[cos(kz — wt) — cos(kz + wt)]X (2 points)
(-1 point if no X)
B.B = % [cos(kz — wt) + cos(kz + wt)]y (4 points)
By = % because of scaling of the magnetic field (-1 point if incorrect)
y because of polarization along X and propagation along Z (-1 point if incorrect)

The “+” sign because E changes the sign upon reflection so B does not, and EXB is directed

to the propagation direction (-1 point if incorrect)
C. (2 points)
1 E 2F
K x (—2) = —B = —2[2cos(wt)]| . K =| =2 cos(wt) %.
[0 HoC HoC

D. The force per unit area is
2E§ .
f =K x Bave = %[cos(w't) ] x [cos(wt) ¥] = | 2c0E] cos?(wt) 2.
o€

The time average of cos’(t) is 1/2, so (2 points)

fave = E[}Eg‘

E. This is exactly radiation pressure at a perfect reflector (1 point)

Maxim S. Pchenitchnikov Steven Hoekstra
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